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Chapter 1

Introduction

1.1 Research overview

My research work revolves around the overarching goal of developing control meth-
ods for complex, possibly unknown systems. This is motivated by the high com-
plexity of modern controlled systems, manifested in properties such as nonlinearity,
stochasticity, large scale, and distributed nature. Moreover, some of these systems
cannot be accurately modeled, e.g. due to being insufficiently understood. For such a
case where the model 1s unknown, | worked during my PhD research on the promising
class of reinforcement learning (RL) methods (Sutton and Barto, 1998; Szepesvari,
2010; Lewis and Liu, 2012), which learn how to control a nonlinear stochastic system
without requiring a model. Even when the model is known, the nonlinear stochas-
tic control problem remains highly challenging: model-based counterparts to RL, like
planning and dynamic programming (IL.a Valle, 2006; Bertsekas, 2012; Powell, 2012),
can address this setting. The focus of my recent, post-Phl} work has been placed on
this latter case, and specifically on optimistic planning algorithms and their applica-
tions.

Optimistic planning (OP) methods (Munos, 2014) solve optimal control problems
modeled as Markov decision processes (MDPs) (Puterman, 1994). In this framework,
a controller measures at each discrete time step the state of a process, and applies an
action according to a control policy. As a result of this action, the process transits into
a new state, and a scalar reward signal is sent to the controller to indicate the quality
of this transition. The controller measures the new state, and the whole cycle repeats.
The goal is to find an optimal policy, 1.e., a policy that maximizes the cumulative
reward over the course of interaction (the return). This framework can be applied to
lower-level control problems such as regulation to a desired state, where the rewards
are defined based on the distance to this state. It works also in higher-level problems
such as a robot learning to solve a task in an unknown environment, where the rewards
encode success or failure in the desired task.
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OP techniques work in a local fashion by finding actions on demand for each
encountered state. The local nature of planning methods reduces their dependence
on state dimensionality in comparison to dynamic programming or RL, and allows
most methods to naturally deal with continuous state variables, which is essential in
the control of physical systems. At each step, an explorative search is made through
the space of possible action sequences from the current state, represented as a tree.
Then, the best first action found is applied, and entire process repeats at the next step.
Planning techniques are thus a very general type of model-predictive control. Since
computation is limited in the online setting, the search must be efficient, and a good
way to achieve this is by applying the principle of opfimism in the face of uncertainty:
given the choice between action sequences having uncertain values, more promising
sequences are explored first. Formally, the most promising sequence is one with the
largest upper bound on its return. Optimistic methods combine in a novel way ideas
from optimization, planning and graph search (L.a Valle, 2006), and RI. (Sutton and
Barto, 1998) with bandit theory in particular playing an important role (Auer et al.,
2(:02).

Several OP algorithms had already been developed when | entered the field,
mostly in the discrete-action case (Kocsis and Szepesviri, 2006; Hren and Munos,
2008; Bubeck and Munos, 2010; Walsh et al., 2010), with Upper Confidence Trees
perhaps the most widely known technique (Kocsis and Szepesviari, 2000). Several
algorithms also worked for continuous actions (Mansley et al., 2011; Weinstein and
Littman, 2012). Some of these methods have very useful features: they are appli-
cable to general, nonlinear dynamics with general, nonquadratic cost functions; and
they provide near-optimality guarantees that are placed in a tight relationship with the
computational budget invested by the algorithm (Hren and Munos, 2008; Bubeck and
Munos, 210). However, they achieved this under restrictive conditions: discrete ac-
tions; and either for deterministic systems without uncertainties and disturbances, or
for stochastic systems but only searching in the suboptimal class of open-loop action
sequences. The first major part of this thesis will present my research to overcome
these limitations.

Specifically, two deterministic algorithms are introduced: one that works for con-
tinuous actions, and one for handling disturbances in a robust, minimax approach
that freats them as the actions of an opponent. Then, the case of stochastic systems is
considered, which can be used to model e.g. noises or disturbances with known prob-
ability distributions. An algorithm is first provided for distributions with discrete and
finite support, which is then extended to a class of continuous density functions via
sigma-point discretization. The near-optimality of all the algorithms with the excep-
tion of the continuous-action one is characterized, introducing several novel measures
of problem complexity appropriate for each particular class of problem. Additionally,
all the algorithms are extensively evaluated in simulation experiments.

Beyond their fundamental interest in optimal control, the generality of OP meth-
ods also makes them useful to address other challenges in nonlinear control. In par-
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ticular, networked systems are becoming extremely important in today’s world: com-
munication networks, power and transport grids, decentralized computing networks,
and social networks are just some examples of such systems influencing everyday
life. The second major part of the thesis therefore investigates applications of opti-
mistic methods to the control of networked systems, treating these systems from two
complementary perspectives. The first perspective tackles the coordinated behavior
of multiple, interconnected systems called agents, under the constraints imposed by
the interconnection topology. In this context, an algorithm based on optimistic opti-
mization of fixed-length action sequences is first proposed, in order to achieve con-
sensus over the agents’ state variables under a fixed communication topology. Then,
OP over variable-length action sequences is applied to achieve flocking, where the
topology is dictated by a proximity relationship between the agents; here the main
analytical aim is to guarantee the preservation of the interconnection topology under
this constraint.

The second perspective deals with communication constraints induced by a net-
work interposed between a single system and its controller. 'Two optimal, networked
control strategies using OP are proposed to reduce the number of transmissions over
the network. In the first strategy, action sequences are transmitted to the plant at
a fixed period. In the second strategy, the algorithm decides the next transmission
instant according to the last state measurement (leading to a self-triggered policy),
working within a fixed computation budget. The algorithms are thoroughly analyzed,
showing that they effectively solve the problems they target.

In addition to their analysis, all the algorithms for networked systems are evalu-
ated in numerical examples.

The above two directions, into OP algorithms and their applications to nonlinear
control, comprise the main thrust of my post-PhD research. Additional directions in
RL., applications, and secondary planning and control topics are reviewed in separate
chapters. Direct offshoots of my PhD research are not discussed, even if they were
done or published after the PhD. The same applies to work where | participated but
did not take a leading role.

In the future, T will start from the planning and control research presented in this
thesis and I will integrate novel control insights, together with machine learning and
RL ideas, in order to approach my overall objective of an algorithmic framework
Jor the learning and planning control of complex systems. An important component
will be the integration of OP with RL ideas from my previous expertise, in order to
achieve hybrid algorithms with the advantages of both techniques. Stability guaran-
tees for the solution obtained will also be very important. Applicative directions will
be continued and new applications will be sought, both in general classes of nonlinear
control problems and also in the specific area of assistive robotics. All these results
will serve as a solid platform from which to explore new directions in decision and
control on the one hand, and machine learning and artificial intelligence on the other.
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1.2 Adyvising and management activities

Throughout my research I have been managing a wide group of student projects,
both in the Netherlands and in Romania. | have been leading as coadvisor 2 PhD
students, one of whom graduated in March 2015; 9 Master and 9 Bachelor students;
among these, two Master projects finalized cum laude in the Dutch system. With my
students, I investigated an agenda of planning, learning, and control topics comple-
mentary to my main research lines, see Chapters 5, 8, and 9.

I have successfully acquired funding for my research in one national project
which is funding a young team over the period 2013-2016; two bilateral, interna-
tional cooperation projects (one PHC-Brancusi and a PICS, the latter funded by the
French side); as well as an internal grant within a funding initiative of the Research
Center for Automatic Control of Nancy, France. I have also been involved in local
project management in French, Dutch, and Romanian research projects.

Recently, I have initiated a new research group on “Robotics and Nonlinear Con-
trol” at the Department of Automation of the Technical University of Cluj-Napoca.
I have been coorganizing the 2014 (Orlando) and 2015 (Cape Town) editions of the
main event at the intersection of reinforcement learning and engineering: the IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning. In
addition, T have been leading several special sessions in previous years.

1.3 Teaching activities

In my work so far, | have been involved in three different academic systems: Roma-
nian, Dutch, and French, in several complementary roles: professor, student, project
advisor, and researcher. My teaching career has begun 12 years ago, during my post-
graduate studies at the Technical University of Cluj-Napoca, when I taught practi-
cal classes for the disciplines Reliability and diagnosis, Computer-aided design, and
Programming. At the same place, but in the complementary role of student, I was
exposed directly to the scientific literature, in course projects that required the critical
investigation and evaluation of methods proposed in published papers. This experi-
ence widened my horizons and was essential in my decision to follow an academic
career. Later, at the Technical University of Delft, T experimented myself with this
way of stimulating critical thinking in students, using a literature project that | helped
develop and coordinate. This was for a Master-level course on Knowlege-based con-
trol systems, within which T also taught invited lectures on reinforcement learning. 1
was also invited to hold such a lecture for the course Control methods for robotics. In
general, my teaching work at TUDelft taught me to coordinate projects and exams for
a large number of students, and introduced me to the development and presentation
of new lectures.

My independent teaching career started in 2011 at the Technical University of
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Cluj-Napoca, where 1 was first an invited lecturer (March 2011), then lecturer (Oc-
tober 2011), and finally associate professor (October 2014). Here, I was responsible
with creating from the grounds up a new Master discipline on Learning control. 1
also fully restructured the English-line Bachelor discpline of System identification.
I am currently leading both disciplines, including lecture, laboratory, project, and
examination work.

In addition, T was invited to present at several workshops and tutorials at top
conferences in the control and robotics fields, an experience which combines cutting-
edge research with a didactic approach. Overall, my expertise familiarized me with
the full spectrum of teaching skills needed in a University teaching career.

1.4 OQutline of the thesis

Figure 1.1 shows a roadmap of the thesis in a graphical form. The main content
is structured hierarchically along the two major threads of work presented above.
Namely, Part 1l focuses on fundamental developments in planning algorithms for
optimal control, and Part 1l on applications of these algorithms to the control of
networked systems. Before this, Part I describes some necessary background, after
the present introduction. At the end, in Part IV, other research directions are outlined,
and an overall plan for the future is delineated. For easy reference, local lists of
references are provided at the end of each part.

1. Introduction

!

2, Background

Applications fo

Algorithms & fundamentals nefworked systems
4.1. OP for MDPs 6.1. OC for
consensus

3.1. 800 3.2. Optimistic ¥ ¥ 7. QP for natworked
for planning minimax search control systems
42, Si o 6.2. OP for
- Slgma- flocking
y / \
5. Related topics 8. Related topics
& outlook & outlook
I I

\/

8. Other directions

!

10. Conclusions & plans

Figure 1.1: A roadmap for the thesis. Arrows indicate dependencies between topics.
Chapter and section numbers are provided.
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Both of the main Parts, IT and 11, are structured in a similar way: after a brief
outline (not shown in the figure), the major research contributions in that direction
are presented, while at the end secondary topics are briefly discussed, together with
an outlook of open issues and ongoing work. In particular, the main algorithmic
developments in Part I concern simultaneous optimistic optimization for planning,
which handles continuous control actions; optimistic minimax search for adversarial
problems; and OP for MDPs together with sigma-OP for stochastic problems. In
Part ITI, optimistic optimization and planning are applied to the control of multiagent
systems to achieve consensus or flocking goals; and optimistic planning is used in
(single-controller) networked control systems.

The two parts can be read largely independently, with the first one being tai-
lored more for planning and RL researchers; while the second part 1s more directly
palatable to control engineers. Within each part, some of the topics are themselves
independent so they can be read separately. All these interdependencies are shown in
Figure 1.1, and each possibility of following the arrows from the top to the bottom of
this figure indicates one short way of reading the thesis. In addition, one can interrupt
such a thread at any time in order to jump back to the black disks and follow another
arrow. One particular way of doing this leads to reading the thesis sequentially.

There are some minor cross-dependencies that are left out of the figure, but these
do not affect the main flow. E.g. OP for MDPs (Section 4.1) is needed to understand
some of the related topics for networked systems in Chapter 8; and some occasional
backtracking may be necessary to find the description of example problems, because
the same example i1s used multiple times but in order to avoid redundancy it is only
presented in detail once, the first time it is used.

1.5 Acknowledgments

I am grateful to all my students and collaborators for their contributions to the work
presented here. Among the students, 1 would like to mention especially my PhD stu-
dents 1vo Grondman and Koppany Mathé; and my Master students Elod Pall, Sander
Adam, Lex Daniels, Maarten Vaandrager, and Thijs Wensveen, all of whom did
significant work ending up in journal and conference publications. Long-term, ex-
tremely fruitful collaborations with Rémi Munos, Jamal Daafouz, Constantin Mori-
rescu, Romain Postoyan, and Damien Emst should also be highlighted; and of course,
the contribution of my PhD advisors Robert Babuska and Bart De Schutter did not
stop with my degree — instead, we are continuing to work together and coauthor pa-
pers. Countless other people have contributed, formally or informally, with scientific
ideas, material, and opportunities, including for example Dragan Negic, Frank Lewis,
Dimitri Bertsekas, Michail Lagoudakis, Csaba Szépesvari, Warren Powell, Raphael
Fonteneau, Boris Defourny, Liviu Miclea, Levente Tamas, and on and on — too many
to mention here. All this is without even mentioning the help of family and friends,
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which has been and is absolutely fundamental.

I would also like to acknowledge funding from the Romanian National Authority
for Scientific Research, CNCS-UEFISCDI (projects PNII-RU-TE-2012-3-0040 and
PHC Brincusi 781/2014), CNRS (PICS project No 6614), CRAN, and Siemens Ger-
many (reference no. 7472/3202246859); and my host institutions after my PhD, in
chronological order: TUDelft, INRIA Lille, CRAN Nancy, and the Technical Uni-
versity of Cluj-Napoca.

Finally, much of this thesis is based on existing papers and books with several
publishers, including among others IEEE, Elsevier, Springer, and Wiley. The copy-
right for the material remains with the respective publishers, and | am grateful to
them for hosting my publications and reusing the material here.

To recognize that the work presented here is the result of the concerted effort and
contributions of all these individuals and organizations, the remainder of the thesis
will be written in the first person plural.

1.6 List of acronyms

This list below collects the most frequently used acronyms in this thesis. To avoid
clutter, acronyms that are only used locally are not included.

MDP Markov decision process

RL reinforcement learning

00 optimistic optimization

DOO, SO0 deterministic, simultaneous optimistic optimization
op optimistic planning

OpPD optimistic planning for deterministic systems
OPMDP optimistic planning for Markov decision processes
SOOP simultaneous optimistic optimization for planning
LP Lipschitz planning

HOLOP, OLOP (hierarchical) open-loop optimistic planning

OMS optimistic minimax search

COP, STOP clock-triggered, self-triggered optimistic planning
NCS networked control systems
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Chapter 2

Background

Several technical preliminaries from the preexisting literature are necessary to con-
struct the rest of the thesis, and we present them here. We start in Section 2.1 with
the optimal control problem that most algorithms we develop aim to solve, either in
its general form or in some specific cases. Then, we present in Section 2.2 two op-
timistic algorithms for optimization problems, which form the basis of the planning
algorithms for control that the thesis focuses on. One such algorithm, optimistic plan-
ning for the specific case of deterministic systems with discrete actions, is described
and characterized in Section 2.3.

2.1 Optimal control problem and Markov decision process

Throughout this thesis, we consider problems in which a nonlinear, possibly stochas-
tic dynamic system must be optimally controlled in discrete time. Optimality is mea-
sured by a cumulative reward signal which must be maximized: the return. Such
problems arise in many fields, including artificial intelligence, automatic control, op-
erations research, economics, medicine, etc. They are often modeled as Markov
decision processes (MDPs).

In an MDP, the system is described by a state signal x varying in the state space
X, and can be influenced by actions w in the action space L. State space X may be
countable or uncountable (e.g. continuous). The probability of reaching next state x’
after action u is taken in state x is given by the probability density f(x,u, ), where
f:X xUxX —[0,) is called a transition function. Tt collects the density functions
for all pairs (x,«) and describes the dynamics of the system. After the transition to x',
areward v = p(x,u,x’) is received, where p : X x U x X — R is the reward function.
A control policy @ : X — U indicates how the controller chooses actions to interact
with the system. Denoting by k the discrete time index, the expected infinite-horizon

11
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discounted return of state x under a policy 7 is:

V() = By o flamt), ) {};0 Ve } 2.1)

where xo = x, rpp1 = P(xg, T(xg),2%41), ¥ € (0,1) is the discount factor, and the
notation xz 1 ~ f(xz, w(xz),-) means that after each step k, x; is drawn from the
density f(xg,7m(xz), ) over next states. Other types of return can also be used, such
as finite-horizon or averaged over time, but we will only consider discounted returns
in this thesis. We call V™ : X — R a value function.

The goal is to control the system using an optimal policy 7*, so that the value
function is maximized for every x € X. This maximal, optimal value function is de-
noted by V* and is unique, so it does not depend on the particular optimal policy.
It 1s also useful to consider an action-dependent optimal value function, the optimal
Q-function:' Q*(x,u) = Ev.p(ra) {P (x,u,x") + yV*(x'} }. Note that optimal control
problems are often stated so that a cost is minimized, rather than a return being max-
imized — but the two formulations are equivalent. For the technical conditions under
which the expectation in (2.1) is well-defined and an optimal solution is guaranteed
to exist, see Bertsekas and Shreve (1978).

We make a standing assumption of reward boundedness, that will be required to
hold for all the optimal control algorithms in this thesis.

Assumption 2.1 Rewards are bounded in [0, 1].

Reward boundedness is often assumed in the MDP literature, see e.g. Ch. 4 of
(Bertsekas and Shreve, 1978) and (Szepesvari, 2010), since it ensures boundedness
of the value in (2.1). The main way to achieve boundedness is by saturating a possibly
unbounded original reward function. This changes the optimal solution, but is often
sufficient in practice. Then, the resulting bounded rewards can be normalized to
[0,1]. On the other hand, the physical limitations of the system may be meaningfully
modeled by saturating the states and actions. In this case, a reward bound follows
from the saturation limits.

2.2  Optimistic optimization

Next, two optimistic optimization (OQ) algorithms are introduced (Munos, 2011).
The problem is to maximize some function g(z), g: Z — R. The optimization pro-
ceeds by hierarchically partitioning the domain Z. This partitioning is represented by
a tree structure .7 in which each node (4, i) is labeled by a point z; ; and represents
a subset of Z denoted Z;;, and containing 7 ;. Iere, 4 > 0 is the depth in the three

INote the “prime” notation, as in e.g. ¥/, is used to generically indicate variables at the next step,
whereas if the actual time step is important, it is included as a subscript, e.g. x;.
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and 7 is the node index at a given depth. The root of the tree represents the entire
domain Z, and the tree is defined so that the children of a node form a partition of
the set represented by their parent. From a computational perspective the partitioning
should be easy to generate. Figure 2.1 exemplifies such a partitioning. Finally, the
set of leaves of the currently explored tree is denoted by %

g(z) A Z0,0 K

Figure 2.1: Mlustration of the tree structure that is used by optimistic optimization. In
this example, Z is an interval and binary partitions are used.

The core requirements of the algorithms are stated in terms of a semimetric £ :
Z x Z — [00,e0), where a semimetric is a function with all the properties of a metric
except possibly the triangle inequality.

Assumption 2.2 The objective function and the partitioning satisfy the following
conditions:

2.2.1 There exists an optimum 2% so that:
g(z")—glz) < lz,2") VzeZ (2.2)

2.2.di There exist c > 0 and A € (0,1) such that for any d, 8; ; < cA? for all nodes j
at depth d, where 84 ; 1= SUp_c7, (24,5,2) is a pseudo-diameter of Z; ;.

2.2.iti There exists a constant [l such that any subset 7y ; contains a ball with center
24,j and radius ;.Lc}ld in the semimetric £,

Intuitively, Assumption 2.2.1 is a local, one-sided Lipschitz property. The other
two conditions define the properties of a good partitioning procedure, which should
provide well-shaped sets (Assumption 2.2.ii1) that shrink with the depth in the tree
(Assumption 2.2.11). E.g. Assumption 2.2.iii forbids sets that, as the number of splits
grows, become infinitely thin along some directions but remain of a constant size
along others. Notfe that the guarantees can be generalized to the case of diameters
that decrease in a different way than exponentially, but for simplicity we only handle
the exponential case here.
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Denote §(d) = cA%, the upper bound on diameters at . OO for Deterministic
functions (DOO) works by partitioning a set that may contain the optimum of g. It
does this by assigning upper bounds to all leaf sets Z,;, (d, i) € %"

b(Zy;) = glza;) + 8(d) (2.3)

so that b(Z; ;) > g(z), Vz € Zz; Then at each iteration, an optimistic leaf set, which
maximizes the upper bound, is further partitioned. At the end, the point with the
largest value in the tree is returned. DOO i1s summarized in Algorithm 2.1.

Algorithm 2.1 Deterministic optimistic optimization (DOO)
Input: function g, computation budget », partitioning of Z
1. initialize &~ with root Zy o
2 forr=1tondo
3 (dT, i?) - argmaxg je ¢ b(Zd,i)
4 expand (d7,i) by partitioning Z;: ;+, and add children to 7
5: end for
Output: 7= zg+p where (d",i") = argmaxy ;e » g(za,)

DOO assumes knowledge of £ by using 8(d) in the upper bounds. The alternative,
Simultaneous QO (S00), does not require this knowledge. Instead, at each round,
SO0 simultaneously expands all potentially optimal leaf sets: those for which the
upper bound could be largest under any semimetric £ satisfying the conditions. With a
little thought, a set can only contain a largest upper bound if its sample value is at least
as good as the values of all sets with diameters larger than its own; we say that the set
is not dominated by larger sets. Since further, §(d) decreases with d, we only have
to compare with leaves higher up the tree. At each iteration ¢, the algorithm expands
at most one leaf set at each depth. If we define %~ as the set of leaf nodes having
depths &' < d, then a leaf {d,i) is only expanded if g(z;;) = max(g y\e ., g(za v )i
if there are several such leaves one is chosen arbitrarily. This selection procedure is
illustrated in Figure 2.2. SOQO additionally limits the tree depth at each iteration £ with
a function dp,, (1), a parameter of the algorithm that controls the tradeoff between
deeper or more uniform exploration. Algorithm 2.2 summarizes SOQO. Note that in
the form given here, SOO may take more than the budget # to finish the last iteration.

The convergence of DOO and SOO depends on the smoothness of the func-
tion g in the semimetric £, formalized next. Define first the near-optimal sets Z; =
{z€Z|g(z*)—glz) <e}. For any ¢, the packing number of Z, is defined as the
maximal number of disjoint £-balls with centers in 7, and equal radii pte (recall pt
from Assumption 2.2.iii). Finally, the near-optimality dimension is the smallest 8 >
so that there exists a positive constant (', such that the packing number is smaller than
Ce~P. The optimization problem is easier to solve when the semimetric ¢ captures



2.2, OPTIMISTIC OPTIMIZATION 15

A
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Figure 2.2: Tlustration of set selection in SOO. Depth 4 increases to the left, while
set diameter § increases to the right. Samples are shown as 'z’, and the samples of
sets selected for expansion are circled and colored red.

more closely the smoothness of the objective function g around z*, in which case
B is smaller, with the ideal § being 0. Tn some contrived cases § may be infinite,
e.g. when g is constant and a ‘malicious’ semimetric is defined that shrinks super-
exponentially around z*. In order to eliminate these edge cases, another technical
assumption is needed.

Assumption 2.3 A finite 3 exists.

Then, the following results hold (Munos, 2011).

Proposition 2.1 (Near-optimality) Given a budget n, DOO returns a solution 7 sat-
isfying.:
o JomVBy B0
glz) &) = ey
oA™Yy =0
where C is the constant from the near-optimality dimension. SOO returns a solution
7 satisfying:
( *) (A) O(ni(lia)/ﬁ) lfﬁ >
7 )—glZ)=
ST o@viiey g =0

where C' > 1 is a constant, and we choose dmax (1) = 1* (with a > 0) when B > 0 and
dmax (1) =/t when § = 0.

Thus, sub-optimality decreases as a power of » which depends on the problem
complexity as expressed by #; and when § = 0, the decrease is faster — exponential,

“Let g,k (0,) — . Statement g(¢) = O(h(1)) (or g(t) = Q(h(2))) for large ¢ means that 3, ¢ > 0
so that g(1) < ch(t) (or g(t) = ch(t)) ¥t = t5. When the statermnent is made for small 7, it means that
Jtg,¢ > 0 so that the same inequalities hold for ¥ < #. f(#) = O(g(#)) for large (or small} ¢ when
Ja,b,ty > 0 so that £(£) < allogg()?g(t) Vt > 1y (or ¥t < t5). The logarithmic term asymptetically
becomes negligible compared to g(t).
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Algorithm 2.2 Simultaneous optimistic optimization (SOQ)
Input: function g, depth function dyy,.(-), budget n,
partitioning of 7
I: mitialize & with root Zyg; ¢ < 1
2: while s <ndo
3 Smax * —
4 for 4 = 0 to min{depth( 5 ), diax (1)) do
5 il — argmax; g(z4 ;)
6
7
8
9

if g(z4 1) > gmax then
expand (d, i), add children to &
Emax g(zd,ﬁ)
: f—rf+1
10: end if
11: end for
12: end while
Output: 7= g4+ where (d",i") = argmaxy ;e » g(za,)

confirming that the problem is ‘easy’ and solved efficiently by the algorithm. Note
that DOO and SOO have similar guarantees. Since it does not use the semimetric,
SOO must expand more sets, and it converges at a somewhat slower rate. However,
for the same reason, SOO has a surprising advantage: it converges at the fastest rate
allowed by any valid semimetric.

2.3 Oplimistic planning for deterministic systems

In this section we consider a deterministic variant of the problem in Section 2.1,
where the transition function reduces to ¥’ = f(x, u), since a single state x is reached
with probability 1; and the reward function to ' = p(x,u), since the next state x’ —and
hence the reward — are fully determined by x and x.* Because the system is determin-
istic, a solution from a given initial state x can be represented by an infinitely-long
sequence of actions #.. = (o, u1,...) € U™, and the discounted return (value) of this
sequence is:

V() = Y Yrea = Y ¥ () (2.4)
k=0 k=0

where xg = x,x3,1 = f{xg,u;) for k > 0, and y € [0,1) is the discount factor. Then,
the optimal value function satisfies V*(x) = sup, V*-(x). Note that action sequences

*Here as well as in the sequel, we slightly abuse the notation by using the same symbols to denote
analogous but mathematically different objects in the stochastic and deterministic case. For example,
the deterministic p(x, u) is obtained by plugging x' in the stochastic reward function, p(x, =, x’). Tt will
usually be clear from the context to which variant the text refers; when it is not, we make it explicit.
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are more general than a state-feedback policy m, which would also be sufficient to
represent the solution, as in Section 2.1. We will nevertheless use the sequence-based
formulation since it better fits our approach.

In addition to reward boundedness from Assumption 2.1, we restrict [/ to a finite
set.

Assumption 2.4 The action space is discrete (or discretized), U = {ul, M }

Many systems have inherently discrete and finitely-many actions, because they
are controlled by switches. This is the case e.g. in traffic signal control (De Schut-
ter and De Moor, 1998) or water level control by barriers and sluices (van Ekeren
et al., 2013). When the actions are originally continuous, discretization reduces per-
formance, but the loss is often manageable. Discretized actions may sometimes even
be preferable, e.g. actnator saturation can be dealt with by simply discretizing within
the operating ranges.

To introduce the algorithm, we focus on a particular state x where it must be
applied, and by convention set the current time to 0, so that xo = x. Of course, the
procedure works at any time step.

P, PLx;)

Figure 2.3: Tllustration of an OPD tree &7, Nodes are labeled by actions, arcs repre-
sent transitions and are labeled by the rewards and next states resulting by applying
the corresponding action. Subscripts are depths, superscripts index the M possible
actions/transitions from a node (here, M = 2). The leaves .#'(.7") are enclosed in a
dashed line, while the thick path highlights an action sequence. Note that the root
corresponds to the empty sequence.

Optimistic planning for deterministic systems {OPD) (Hren and Munos, 2008)
explores a tree representation of the possible action sequences from the current state,
as illustrated in Figure 2.3, OPD starts with an unlabeled root node, and iteratively
expands nodes, where each expansion adds new children nodes corresponding to
all the M actions u',...,u". Each node at some depth 4 is reached via a unique
path through the tree, and can thus be uniquely associated to the sequence of actions
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Algorithm 2.3 Optimistic planning for deterministic systems (OPD)
Input: state x, budget n or depth 4 (set the other to o)

1. initialize tree: & — {root}, i =0

2: repeat
3 find optimistic sequence: ' € argmax, w(ay bx(n)
4 add children «/, j = 1,...,M to the node of u'
5: i—i+1
6
7

runtili=nor A(T ) =d+1
s ne—Ld—A(T)—1
Output: u* € argmax, ¢ (o) lx(u), d, n

g — (mo,u1,...,ug_1) on this path. In what follows, we will work interchangeably
with sequences and paths, keeping this equivalence in mind.
For a sequence u;, we define three quantities:

a1 ¥
L(ug) =Y v o), ba(ug) =Lua) + 1—y
d’=0

velta) = L{ua) + V¥ (xa)

where the states are generated with the action sequence uy, like in (2.1). Subscript x
indicates that the three quantities depend on the state x = xy where OPD is applied.
Due to Assumption 2.1, the rewards below depth 4 are in [0, 1], so Li(uy) provides a
lower bound on the value of any infinite sequence that starts with u;, while b, (u,) is
an upper bound. Value v,(u,) is obtained by continuing optimally after ;. We call
functions b and [ respectively “b-values” and “l-values” in the text.

Recall notation .%'( 57) for the set sequences corresponding to leaves of &7. OPD
optimistically explores the space of action sequences, by always expanding further
a most promising leaf sequence: one with the largest upper bound by(u). At the
end, a sequence that maximizes the lower bound /. (#) among the leaves is returned.
Since leaves sit at varying depths d in the tree so that ¥? /(1 — y) varies, maximizing
I, (u) is different from maximizing b, (), and can intuitively be seen as making a safe
choice. Algorithm 2.3 summarizes the entire procedure, where function A{-) gives
the depth of a tree, and any ties among several sequences maximizing upper or lower
bounds are broken arbitrarily. We allow the algorithm to terminate either after a given
number of expansions, or after a node at given depth d has been expanded, leading
to A(Z") =d + 1. Sometimes a sequence of length A(F ) may be returned, in which
case the last action is removed for uniformity of analysis.

The computational budget is measured by the number of expansions, since an ex-
pansion takes M calls to the model f and to the reward function p, and for nonlinear
systems computing f dominates the execution time. Other tree operations (such as
computing b-values or traversing the tree to find the optimistic sequence) are signifi-
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cantly cheaper, but can be bounded between O(rlogn) and O(n?), depending on the
branching factor k(x) defined in the next section.

To characterize the complexity of finding the optimal sequence from a given state
x, we use the branching factor k(x) (average number of children per node) of the near-
optimal subtree. This subtree contains only nodes that, given the rewards obtained
down to them in the tree, cannot be ruled out as belonging to optimal sequences. In
general, exploring these nodes is unavoidable, and x(x) is in this sense necessary to
characterize the problem. OPD only explores the near-optimal subtree, leading to a
priori guarantees on the relation between computation, sequence length, and near-
optimality. Since x(x) is generally unknown, actual values for e.g. near-optimality
cannot be determined in advance. Nevertheless, the analysis provides confidence that
OPD automatically adapts to the complexity of the problem at state x, described by
k{x). We return to detail these properties after the formal development is in place.

The near-optimal subtree is defined as:

T4 = {wad 2 0,V (x) —wlua) <71 1)) @.5)

Let 77 (x) be the set of nodes at depth & on 7 *(x) and |-| denote set cardinality, then
the asymptotic branching factor is defined as x'(x) = limsup,_... ‘fd* (x) ‘l/ ¢

A sequence uy is said to be g-optimal when V*(x) —v,(u;) < £. The upcoming
theorem is a consequence of the analysis in (Hren and Munos, 2008; Munos, 2014).
Part (1) of the theorem shows that OPD returns a long and near-optimal sequence,
and parts (i1), (1i1) show that sequence length and near-optimality are closely related

to the computation budget, via branching factor x(x).

Theorem 2.2 Let x € X. When OPD is called at x:

(i) The length of the sequence u* returned is d = A(5) — 1. Denoting €(x) =

V*x) — I (u*), we have g(x) < %

(ii) When OPD is called with large target depth d: e If x(x) > 1 it will require a
number of expansionsn(x) = O(k{(x)?). e If k(x) = 1, n(x) = O(d).

(iii) When OPD is called with large budget n: o If x(x) > 1 it will reach a depth
_ logt/

of d(x) = QB and £(x) = O(n ™0)). @ I x(x) = 1, d(x) = Q(n) and

g(x) = Oy where c(x) is a constant. ]

Proaof:(sketch) Item (i) follows from the proof of Theorem 2 in (Hren and Munos,
2008), (i1) from the proof of Theorem 3 in (Hren and Munos, 2008), and (iii) from
the proofs of Theorems 2 and 3 in (Hren and Munaos, 2008). An outline for part (i1) is
given here, since it will be useful later in our analysis. OPD has the important prop-
erty that it only expands nodes in .7 *(x), although it uses solely reward information
from the current tree (Hren and Munos, 2008; Munos, 2014). According to item (i),
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performance is dominated by the depth reached. Thus the worst case is when nodes in
T *(x) are expanded in the order of their depth. Now, 7 *(x) contains # — O(k(x)?)
nodes up to depth 4 when x > 1, and n = O(d) otherwise. Inverting these rela-
tionships obtains the formulas for ¢ in the Theorem statement, and replacing these

expressions for 4 into % provides the corresponding near-optimality bounds. W

The sequence returned is immediately €(x)-optimal, since V*(x)— vy (u*) <
V*(x) —L(u*) < £(x) in view of part (1); the second inequality here is stronger than
€(x)-optimality.

To build more intuition on & *(x) and & (x), note that 7 *(x) contains sequences
for which it is impossible to tell, from their rewards down to d, whether or not they are
part of an optimal solution, because their near-optimality is smaller than the amount
of reward ¥ /(1 —y) they might accumulate below depth 4. Usually only some se-
quences have this property, therefore & *(x) is smaller than the complete tree and
k(x) is smaller than the number of actions M. The smaller x(x), the more easily
near-optimal sequences can be distinguished, and the better OPD does. The best case
is x(x) = 1, obtained e.g. when a single sequence always obtains rewards of 1, and all
the other rewards are {}. In this case the algorithm must only develop this sequence,
and suboptimality decreases exponentially. In the worst case, x(x) = M, obtained e.g.
when all the sequences have the same value, the algorithm must explore the complete
tree in a uniform fashion, expanding nodes in order of their depth.

OPD is closely related to the classical A* heuristic search algorithm, see Ch. 2
of (L.a Valle, 2006}, and can in fact be seen as an extension of A* to infinite-horizon
problems using the heuristic ¥ /(1 — 7) on the leaf values.

Tt is also nstructive to examine the relation between OPD and DOO. OPD is, in
fact, DOO applied to optimize the return g(z) = V*=(x), for fixed x, over the space of
infinitely-long action sequences z = u™. The semimetric is:

i (o, ],
Y
(U, m,,) = =

where diff(u..,u! ) is the smallest depth where the two sequences are different. This
is equal to the largest difference between the returns provided by the two sequences
in any possible MDP, so clearly the objective function V*= satisfies the required
Lipschitz-like property of Assumption 2.2 with respect to semimetric £. The set
of sequences 7; corresponding to each node uy consists of all infinitely-long se-
quences starting with ugz. Under the chosen metric, the diameter of each such set
s 8(Zy) = % since any two sequences in Z; can differ at the earliest at index 4.
Each such set 1s split by making the choices for 1y definite, so that we obtain M dif-
ferent children sets Z;; which are specified up to 4 + 1 actions, one set for every
value of uz £ {ul, LuM } There is one technical difference from DOO: an exact
point cannot be sampled inside a set 7;, since any such point is an infinitely long
sequence of actions. This i1s fortunately not a problem, since upper and lower bounds
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bound on the values of sequences in the can still be obtained with (2.5), and they can
be used in place of the DOO b-values and function values, respectively, as show in
Algorithm 2.3,
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Introduction and outline

The optimistic planning algorithm from Section 2.3 has very useful features: it is
applicable to systems with general, nonlinear dynamics and general, nonquadratic
cost functions; it provides near-optimality guarantees that are placed in a tight rela-
tionship with the computational budget invested by the algorithm via Theorem 2.2;
and, as a side-benefit, it also gives sequences of actions that are guaranteed to be
long, which will prove useful later, in Chapter 7. However, it achieves all this under
restrictive conditions: the actions must be discrete and finitely many, and the system
must be fully known, without any disturbances. Many real control problems do not
satisfy these conditions, and therefore we dedicate Part 11 of this thesis to developing
algorithms that do not require them.

Specifically, we start by discussing two deterministic algorithms in Chapter 3:
one that works for continuous actions (Section 3.1), and one for handling distur-
bances in a robust, minimax approach that treats them as the actions of an opponent
(Section 3.2). Then, in Chapter 4, we consider the case of stochastic systems, where
the dynamics are affected by noises or disturbances with known probability distribu-
tions. We provide first an algorithm for distributions with discrete and finite support
in Section 4.1, and then we extend it to a class of continuous density functions via
sigma-point discretization, in Section 4.2. We analyze the near-optimality of all the
algorithms with the exception of the continuous-action one, for which work is ongo-
ing. This ongoing direction is outlined in Chapter 5, together with future work and
other related directions of research, which are not discussed in detail in the thesis.

The material in this part 1s based on the following publications:

(P1) L. Busoniu, A. Daniels, R. Munos, R. Babugka, “Optimistic Planning for Conti-
nuous-Action Deterministic Systems”, Proceedings 2013 Symposium on Adap-
tive Dynamic Programming and Reinforcement Learning (ADPRL-13), Singa-
pore, 15-19 April 2013 (Section 3.1).

(P2) 1. Bugoniu, R. Munos, E. Pill, “An analysis of optimistic, best-first search for
minimax sequential decision making”, Proceedings 2014 IEEE Symposium on
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL-14),
Orlando, USA, 10-13 December 2014 (Section 3.2).
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(P3) L. Bugoniu, R. Munos, “Optimistic Planning for Markov Decision Processes”,
accepted at the 15th International Conference on Artificial Intelligence and
Statistics (AISTATS-12), Canary Islands, Spain, 21-23 April 2012 (Section 4.1).

(P4) 1. Busoniu, R. Munos, B. De Schutter, R. Babuska, “Optimistic Planning for
Sparsely Stochastic Systems™. Proceedings 2011 IEEE International Svmpo-
sium on Adaptive Dynamic Programming and Reinforcement Learning
(ADPRIL-11), pages 48-55, Paris, France, 11-15 April 2011 (Section 4.1).

(P5) L. Bugoniu, R. Munos, R. Babuska, “A Survey of Optimistic Planning in Mar-
kov decision processes”. In Reinforcement Learning and Adaptive Dynamic
Programming for Feedback Control, F. Lewis and D. Liu, Editors, series Com-
putational Intelligence, Wiley, 2012 (parts of Section 4.1).

(P6) L. Bugoniu, L. Tamas, “Optimistic Planning for the Near-Optimal Control of
General Nonlinear Systems with Continuous Transition Distributions”. Pro-
ceedings 19th IFAC World Congress (IFAC-14), Cape Town, South Africa, 24—
29 August 2014 (Section 4.2).



Chapter 3

Advances In deterministic systems

3.1 Optimistic planning with continuous actions

In this section we consider deterministic problems with continuous, scalar actions.
In these problems, an infinite-dimensional space of action sequences must be ex-
plored. We devise an optimistic planning algorithm to perform the search starting
from Lipschitzian planning (LP), see Chapter 5 of (Hren, 2012). LP splits the infinite-
dimensional space into hyperboxes of increasing dimensionality, guided by upper
bounds on the return of all sequences within a hyperbox. To compute the bounds, LP
requires globally Lipschitz dynamics and rewards, with a known Lipschitz constant.
This is an 1mportant limitation, since the system may not be Lipschitz, or even if it
is, its smoothness will usvally vary across the state-action space. In the latter case,
the Lipschitz constant will be conservative, leading to poor performance in smoother
regions.

We therefore propose a method that does not rely on the restrictive assumption of
a known, global Lipschitz constant. To achieve that, we exploit the principles behind
simultaneous optimistic optimization (SOO) (Munos, 2011), see Section 2.2, which
only requires local smoothness around an optimum, without knowing the Lipschitz
constant or indeed even the metric. We develop a nontrivial extension of SOQO to the
optimization of the return over infinitely long action sequences, and call the resulting
algorithm SQOQ for planning (SOOP). The main idea is to select at every iteration all
hyperboxes that are potentially optimal for any metric — rather than the box with the
largest upper bound in the given metric, like LP. Then for each selected box, a choice
is made on the dimension to split further, guided by a tuning parameter.

Compared to SOQ, the main novelty introduced by SOOP is a relaxed selec-
tion procedure for potentially optimal boxes. This is necessary because (roughly
speaking) SOO would require sorting boxes by their diameter in the unknown metric,
which is not possible. The relaxation works under a weaker, reasonable assumption
on the ordering of diameters. Due to this difference and other particularities of plan-

29
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ning, the analysis of SOOP is currently open. However, we expect good performance
due to the features of SOO, which guarantee convergence to an optimum at the most
favorable rate given by any valid metric.

Concerning related work, several OP methods for continuous actions existed prior
to SOOP. HOOT (Mansley et al., 2011) and SP (Hren, 2012) rely on the principle of
Upper Confidence Trees: they explore the space of sequences of a given length (plan-
ning horizon) K, optimizing for the kth action the refurn obtained over subsequent
steps. HOLOP! (Weinstein and Littman, 2012) optimizes directly the K-horizon re-
turn relative to the initial state (at X = (). All three methods are limited by searching
for a sequence that is only optimal over horizon K, whereas the control problem is
infinite-horizon. In principle, K can be taken sufficiently large, but this will waste
computation, and in practice K is a problem-dependent parameter. The actual space
that should be explored is that of infinitely long continuous-action sequences. To our
knowledge, the only existing OP algorithm that does this is LP, discussed above. Note
that HOOT and HOLOP alse work in stochastic problems, whereas SOOP works in
deterministic ones.

3.1.1 Problem statement and Lipschitz planning background

Like for OPD in Section 2.3, we consider a current state xo and by convention set the
current time to 0. A sequence of K actions is denoted ug = (ug,uy,...,ux 1) € Uk,
It is important to note that here we do not use notation 4 for the sequence length,
because this length no longer corresponds to depth in a tree. The discounted value
of an infinitely-long sequence u.. ¢ U™ is given by V*=(x;) from (2.4), while the
truncated return of a sequence with finite length K is taken from (2.5):

Hug) = ;;_o Vo (1) 3.1)

In addition to the standing Assumption 2.1 on bounded rewards, the following
structure of the action space is required.

Assumption 3.1 The action space is the scalar unit interval: U = [0,1].

Scalar actions are only assumed for convenience, as they allow us to introduce the
derivations and the algorithm in a simple fashion. The unit interval can accommodate
any other closed interval by translation and scaling, but noncompact action spaces
cannot be considered.

In the scalar case, I/™ can be visualized as an infinite dimensional hypercube on
which each dimension represents the action space at that step. The goal of continuous-
action planning is to explore 7™ in such a way that after a computational bud-
get 1s exhausted, a near-optimal action sequence u is returned. The method we

IThe acronyms stand for: hierarchical optimistic optimization applied to trees (HOOT), hierarchical
open-loop optimistic planning (HOLOP), and sequential planning (SP).
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develop explores /™ by iteratively splitting it into hyperboxes (boxes, for short).
Such a box %; € U™ is the cross-product of a sequence of subspaces (intervals)
(i, ... ,,u}lchl, U,U,...) where g C U and K;— 1 is the deepest discretized dimen-
sion; for all further dimensions ,u}; =1{J. Thus K; is the number of discretized dimen-
sions, and might be seen as a “length” of %;. A box is further explored by trisecting
either the subspace of an already discretized dimension, or the space U for the first
undiscretized dimension, K;. Thus trisecting dimension k corresponds to refining
further the action at step k. In Figure 3.1 an example of exploring /™ is shown.
u?

<
2

’ P v’(ﬂ;
7

e _ ,r__7 12

1 E

u| L

4

Figure 3.1: Example partition of I7™ after 3 trisections. Dimensions 4 and higher are
left out of the figure.

Define & to be the size of subspace g} in box %:
; max,, , |ut —u| for0<k<K;
511 _ wep |7k — ? 3.2
* { 1 fork > K; (3.2)

where u}; 1s the action at the center of u}é.

Lipschitz planning (L.Py (Hren, 2(12) applies DOO to optimize the return (2.4)
over the space 7™ of infinite action sequences. The form of L.LP we introduce makes
some mild changes to the version in (Hren, 2012), which we point out later. The
dynamics f and rewards p need to be Lipschitz with a known constant /. (we do not
make this a formal assumption since our method does not require it):

1 Geyu) = O )| < L([le = ]| + e — o)) (3.3)
Pli) =) < L v—|| + ju—1])

To apply DOO, first a semimetric ¢ is needed. After some simple calculations that
exploit the Lipschitz property, the difference between the rewards obtained at step &
by two sequences «.., %’ is bounded as follows:

k
0 (o) — p ()| < Y LF Iy —
j=0
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Using this, we construct the semimetric as the following upper bound on the differ-
ence between the returns of the sequences:

o k
Cue,ul) =Y Ymin{1, } 27 u; )} (3.4)
k=0 =0

where the reward difference bounds are additionally capped by 1, since rewards are
bounded in [0,1].

The partitioning scheme is trisection-based. Since the samples are infinite ac-
tion sequences, the algorithm never has access to a complete sample or its value (the
infinite-horizon return), which would be needed for a “vanilla” implementation of
DOO. Nevertheless, like in OPD the metric ¢ can still be used to provide an upper
bound on the returns of sequences in a box discretized only up to some finite dimen-
sion K; — 1:

Ki—1 ) k . ) ;
b(%) = Y. ¥'min{l,pj+ Y LF TS+ —1YKy (3.5)
k=0 J=0

where p}; is the reward obtained at step k by applying the (finite) sequence "f’é- at the
center of the box, and &; are the subspace sizes. Each term of the outer sum bounds
the reward attainable at step k by any sequence in the box, while the fraction covers
the reward attainable from step K; onwards. The difference b(7%;) — I{uk,), see (3.1),
can be informally thought of as the diameter of %;.

LP works by following the principle of DOO: at each iteration, it selects an op-
timistic box % that has the largest upper bound »{%;), and further refines this box
by trisecting one of its dimensions. To complete the algorithm, we only have to spec-
ify the dimension selection procedure. Each dimension & < K in turn is assumed
trisected, and the upper bound for the resulting middle box 1s computed, which will
be smaller due to the reduced subspace size 3}5 /3. To rank the first undiscretized
dimension K;;, the center reward is assumed to be (}, and the subspace size will be
1/3. Finally, the selected dimension is one that reduces the bound the most. Once
an imposed budget n of calls to the model (f,p) has been depleted, the algorithm
returns a center sequence with the largest return among all the boxes.

The original LP in (Hren, 2012) is different in the following ways. (i) The semi-
metric (3.4) and upper bound (3.5) are changed to cap individual reward bounds to
1 only after reaching the last & for which the reward bound 1s smaller than 1 (denote
it by K'); thus (3.4) and (3.5) are tighter. (ii) If K < K;; — 1 for the optimistic box,
only dimensions up to K’ are considered for trisection, whereas we still consider all
dimensions including K;;. This avoids some pathological behavior such as when the
first-step rewards pg are always 1, in which case the original L.LP would keep refining
the first action dimension without ever going deeper. Finally, (ii1) when a dimension
k< Ky — 1 1s trisected, we compute all the rewards up to K — 1 for the left and right
center action sequences, whereas original LP only computes the kth rewards. This
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allows a fair comparison with SOOP, which trisects in the same way. It may either
increase or decrease performance with respect to the original LLP (increase because
the initial upper bounds of the left and right boxes are tighter, decrease because more
model calls are spent).

3.1.2 Sequential optimistic optimization for planning

Determining the Lipschitz /. constant is hard, and, in fact, it must usually be treated
as a tuning parameter of LP. Even so, f or p may simply not be Lipschitz. If they are,
a global Lipschitz constant may underestimate their smoothness in large parts of the
domain, leading to inefficient partitioning. Conversely, overestimating the smooth-
ness (taking 1. too small) is dangerous because the upper bounds become invalid and
the DOO guarantees are lost. Therefore, we now propose an optimistic planning
method that does not require a Lipschitz constant or knowing the semimetric, by ex-
ploiting the principles of SOO. Since the trisection scheme of LP is also used, many
of the building blocks for the new method are already available. We still have to
introduce the main insight that connects the pieces together into the overall, novel
algorithm. We call this algorithm SOOP (Simultaneous Optimistic Optimization for
Planning}).

The main step in SOO is selecting potentially optimal sets. This is ideally done
by sorting the sets by their diameters, and then only selecting sets with values undom-
inated by the values of larger-diameter sets. Note that the diameters themselves need
not be known, only their ordering; in Algorithm 2.2, because diameter decreases with
increasing depth, the depth 4 acts as a proxy for the ordering. Unfortunately, such a
global ordering is very difficult to define for the planning problem. To address this
difficulty, we relax the SOO set selection procedure.

First, because depth no longer translates into a diameter ranking, we stop looking
at the sets as being organized into a tree. Instead, the algorithm just works with a
collection of sets (hoxes in the planning context), which does not affect its validity.
We define a notion of partial ordering on these boxes, and impose an assumption. For
any box %, denote by s% > 0 the number of times the box has been trisected along
dimension k.

Definition 3.1 A box %; is said to be partially greater than U, denoted %y = %, iff
vk >0, S}c’ < Si.

Assumption 3.2 If U; = %, then diameters 8(%;) > 8{%), where: 8(U ) =

SUP, i cq U(tes, L,) Us the box diameter in the unknown semimetric £.

We expect that many useful semimetrics will satisfy Assumption 3.2. For in-
stance, it can be shown that the Lipschitz semimetric (3.4) satisfies it. Under As-
sumption 3.2, we modify the box selection procedure as follows: a box %; is poten-
tially optimal and will be expanded if it is undominated by any % = %; that is, if for
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all %; = %, Huk ) > 1 (uéj). So, %; will be compared only with some of the boxes
with larger diameters: those that are partially greater than it. It will still be expanded
if it is dominated by some larger box that is not partially greater. Thus the new crite-
rion is safe (all boxes that should be expanded are indeed expanded) but conservative
(some boxes that ideally should not be expanded perhaps will be). Conservativeness
implies the algorithm requires more samples than an ideal application of SOO.

The final step is specifying how to select the dimension (action step) for trisec-
tion. ldeally, the dimension that leads to the largest decrease of the diameter in ¢
should be trisected, but of course finding this decrease is not possible since ¢ is un-
known. We leave this procedure open in the general method, summarized as Algo-
rithm 3.1, and discuss alternatives below. Note that the algorithm may take more
than » transitions to complete the last iteration (expand the last batch of potentially
optimal boxes); alternatively, if running time is strictly limited, the latest iteration can
simply be interrupted immediately upon reaching the budget #.

Algorithm 3.1 Simultaneous optimistic optimization for planning (SOOP)
Input: state xo, model ( f, p), budget of model calls n
1: initialize collection of boxes with %/ — 7™

2: repeat
3: select potentially optimal boxes: _

I = (i|V j st % 1 (ulg) > 1))}
4; foric I' do
5 select dimensions &k C {0,K;} to trisect
& fork = xdo
7 trisect dimension &,

add resulting boxes to the collection
end for
: remove parent %; from the collection
10: end for
11: until budget » has been depleted

Output: best sequence found uf,;i*, i* e argmax; [ (u™)

i

(1) The simplest alternative for dimension selection is to just trisect all dimensions
{0,K;}. This is safe, but very costly in terms of model calls and computation. Oth-
erwise, one can conjecture that due to the discounting, which makes earlier actions
more important, these actions should be discretized more finely. Thus a second alter-
native is to (1i) trisect those dimensions for which the resulting boxes are discretized
more finely for smaller &, formally: si > si 11 ¥k > (. Then by induction, all boxes
created by the algorithm satisfy the property. (i11) With the same conjecture, an even
less costly heuristic may be derived that only selects one dimension. This is done by
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ranking dimensions with a new discount factor ¢« € (0, 1):

. k s

Kfnun{argken{l&)é}a (1/3)%} (3.6)

The tuning parameter ¢ trades off discretization accuracy and planning depth: small

values will lead to finer discretizations close to the root, while with a larger value

larger planning horizons are reached. In this sense, ¢ is similar to the depth function

dpax 1 SOO. With this criterion as well, all boxes produced are discretized more

finely for smaller &.

Since in preliminary experiments trisecting many dimensions greatly increased

computational costs without large performance benefits, we use (iii) in the sequel.

'To extend the algorithm to multiple action variables, the partial ordering and the
dimension selection must be changed. Denoting the action variable index by m, the
partial ordering can be changed by requiring that alf variables m at every step & are
split at most as many times in %/; as in %/;. Dimension selection can be performed
by extending (3.6) to compare also between the variables at each k; thus a pair (k,m)
that maximizes the discounted size would be selected, breaking ties in favor of small
k and arbitrarily among m.

We close this section by discussing the amount of model calls required for trisec-
tions. Trisecting a box % of depth K along dimension k requires 3 model calls when
k=K, and 2(K —k) if k < K. This is because in the former case all three new boxes
inherit the entire center sequence ug of %, with the associated rewards, and must
only simulate the next action (step K). When &k < K, the center box retains again the
complete information, whereas the left and right boxes only mherit the subsequence
and rewards up to k — 1, and the tails from & to K — 1 must be simulated.

3.1.3 Experimental results

'To determine the practical effectiveness of SOOP, it will be tested on three problems,
in which it will be compared with three other OP algorithms. The first algorithm is
OPD, which serves as a discrete-action baseline. The other two algorithms support
continuous actions: they are LP, the closest relative of SOOP, and HOLOP (Weinstein
and Littman, 2012). The latter is selected as a representative for the class of finite-
horizon planning algorithms, which also includes HOOT (Mansley et al., 2011) and
SP (Hren, 2012).

For each problem, the algorithms are executed for several values of the budget n
of model calls. Like for SOOP above, the algorithms are not stopped mid-iteration, so
they may take more than » calls to complete. For each value of », the other algorithm
parameters are optimized over a grid, and the best performance is reported. The
parameters are: for SOOP, the discount factor ¢ for dimension selection; for OPD,
the number of discrete actions M (for every M, a uniform grid of actions is generated,
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covering the whole action space); for LP, the Lipschitz constant L; and for HOLOP,
the horizon K. The following parameter values are tested in all problems: for SOOP,
o €{0.1,0.2,...,0.9}; for OPD, M < {3,5,...,15}, for LP, L. € {0.1,0.2,...,1.5};
and for HOLOP, K ¢ {5,10,15,20,25,30,40,50,75,100}. Since HOLOP generates
solutions randomly, it is run 10 times for each experiment and a 95% confidence
interval on the mean performance is computed. The best HOLOP experiment 1s then
the one with the largest upper confidence bound.

DCmotor. Consider a DC motor with two state variables: shaftangle x; £ [—a, 7| rad,
angular velocity x, € [—157, 157] rad/s, and one action variable: voltage u € [—10,10] V.
The dynamics are linear:

)
~

Flou) —AvtBu, A~ {1 0.0095}7

.0084
0 0.9100

1.6618

The goal is to stabilize both states at zero, and is described by the unnormalized
reward function:

P, u,x") = T Qrogt — tf Rty Qe = diag(1,0.001), Ry, =0.05  (3.7)

with discount factor ¥ = 0.95. Using the known variable bounds, the reward is nor-
malized (scaled and translated) into [0, 1], and for the sake of applying the continuous-
action algorithms, the same is done for the action.

This first problem is chosen because it is simple and can be solved with short
planning horizons. Nevertheless, continuous (or finely discretized) actions are nec-
essary for good performance, due to the quadratic action penalty. The four planning
algorithms are applied in receding horizon, from the initial state [, 0]7 and for a
duration of 1s (100 steps). Table 3.1 shows the best parameters of the algorithms.
Each row corresponds to an algorithm, and each column to a budget value n, and the
content cells show the best value of each algorithm’s parameter for the corresponding
n. Figure 3.2 shows the best returns obtained.

Table 3.1: DC motor: the best values of the algorithm parameters for each n.

n= | 100 | 500 | 1000 | 2500 | 5000

SOOP, = 08 | 07| 08 | 0.7 | 0.7
OPD,M=| 3 3 3 3 5

ILP,L=1]09 | 06| 06 | 0.7 | 05
HOLOP, K= | 5 5 5 5 5

SOOP is clearly better than OPD, as expected from the fact that coarse actions
are not sufficient. An interesting observation is that despite this, discretizing finely is
not worth the additional price paid in terms of model calls in OPD (since a larger tree
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Figure 3.2: Performance for the DC motor. For HOLOP, the mean performance with
its 95% confidence interval 1s shown.

must be explored), not even for larger budgets. Only for n = 5000 do we get better
performance by taking M = 5 discrete actions.

SOOP and LP are performing similarly: LP is better for small budgets, while
SOOP overtakes it for larger ones. Apparently, a global Lipschitz assumption works
in this problem, which is not surprising due to its simplicity.

HOLOP is doing worse than all others, and looking at controlled trajectories (not
shown here due to space limitations) this is due fo very coarse actions which are not
able to stabilize the system. Thus, for the budgets considered here, HOLOP cannot
sufficiently refine the solution.

Figure 3.3: Inverted pendulum schematic.

Inverted pendulum swingup. The second problem is swinging up and stabilizing
an underactuated inverted pendulum rotating in a vertical plane, see Figure 3.3. Due
to limited power, from certain states (e.g., pointing down) the pendulum needs to be
swung back and forth to gather energy, prior to being pushed up and stabilized. The
first state xy = « is the angle and wraps around in the interval |— 7, 7) rad; the second
state is the angular velocity x, = & € [—15x, 157 rad/s. The action u = [—3,3|V is
the motor voltage, see (Bugsoniu et al., 2010a), Section 4.5.3 for the dynamics. The
goal of stabilizing the pendulum pointing up is expressed by quadratic rewards of the
form (3.7) with QOrew = diag(1,0), Rpew = 0.3, and the discount factor is y = 0.95.
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Like before, rewards and actions are normalized into [0,1].

While it is a standard benchmark in control and dynamic programming, this prob-
lem nevertheless supplies an interesting challenge to planning algorithms: the solu-
tion must be planned over a longer horizon, and solutions that seem good over a short
horizon will not work, instead just pushing the pendulum in one direction. Further-
more, continuous actions are necessary, firstly due to the action penalty, and secondly
to properly stabilize the pendulum in the unstable, pointing-up position. The plan-
ning algorithms are applied from an initially pointing down position, x = [, 0],
for a duration of 55 (100 steps). Table 3.2 shows the algorithm parameters and Figure
3.4 the best returns.

Table 3.2: Parameters for the inverted pendulum.
n= 500 | 1000 | 5000 | 10000 | 15000
SOOP, = |09 | 0.8 | 0.7 0.7 0.7
OPD,M=| 3 3 3 3 5
LPL=1| 01 02 | 01 0.1 0.7
HOLOP, K = | 10 10 10 10 10

- c : -
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Figure 3.4: Performance for the inverted pendulum.

The relationships between SOOP, OPD, and HOLOP mirror those in the DC mo-
tor problem. However, LP now ranks as poorly as HOLOP. Figure 3.5 (on the next
page) shows representative controlled trajectories with SOOP and LP. LP applies very
coarse actions, while SOOP uses fine discretization to behave near-optimally.? The
reason is found in the small values of L: LP prefers to search longer-horizon solu-
tions rather than discretize finely. Unfortunately, even for this coarse discretization
it does not manage a good swing-up. While the reasons are not entirely clear, one
hypothesis i1s that unlike for the DC motor, in the swing-up problem the Lipschitz

2This is determined by comparing with near-optimal solutions found with dynamic programming,
which is possible in this low-dimensional problem.



3.1. OP WITH CONTINUOUS ACTIONS 39

= : : El

£ 0 : : £

s 3 3 s
!

o [radis)]

o [radis)]

[pe]
Lo
-
(o]
[pe]
(5]
-~

Figure 3.5: Swing-ups of the inverted pendulum with SOOP and LP, for n = 5000
and optimized parameters.

2104 ——"'--"'-—---
D -

£ -

g | 'l

£ 10° | ,

= &

8 ’ == SO0P, execution time

3 19" —8— OPD, execution time

= A =P, execution time
—+#— HOLCP, mean exacution time

0 1000 2000 3000 4000 5000
n

Figure 3.6: Execution time for the inverted pendulum, for optimized parameters.

constant varies, with the system behaving differently around equilibria than arcund
the critical swing-up points; and that [.P cannot deal with that.

Regarding & in SOOP, for tight budgets larger values are preferred, which means
a longer horizon i1s sought at the expense of discretization; as more samples become
available and a sufficient horizon is ensured, the balance shifts back towards dis-
cretization. This behavior is intuitive, since for too short horizons a good swing-up
cannot be achieved, and fine actions become irrelevant.

Finally, we look at the computational cost of the algorithms, see Figure 3.6. Be-
sides the fact that in our Matlab implementation the algorithms are not yet ready for
real-time control, we notice that SOOP and OPD have similar costs, and HOLOP 1s
somewhat faster. LP is slower, but this is at least partly due to our implementation,
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which is optimized for many sequences with similar lengths; whereas around the goal
state, LP typically expands a few very long sequences.

Figure 3.7: Robot arm.

Two-link robot arm. Finally, we consider a two-link robot arm actuated only in
the middle joint, which has 4 states (angles 81, 6 of the joints plus their angular
velocities) and 1 action i (motor torque). Itcan also be seen as a horizontally-oriented
acrobot. The model equations are found in (Bugoniu et al., 2010a), Section 4.5.2. The
link lengths are 0.15 and 0.25m, both masses are 1kg and concentrated at the ends
of the links, and there is neither inertia nor friction. The task is stabilization to zero
starting with both links at rest at angle —x, and the reward is quadratic with Qrw =
diag(1,0,1,0) and no action penalty. Table 3.3 and Figure 3.8 show the results. OPD
and discrete actions do well also in this problem, with SOOP trailing closely behind
and doing better than LP and HOLOP.

L.ooking at Table 3.3 and Figure 3.8, OPD and discrete actions do well in this
problem, with SOOP trailing close behind. Note that in problems where discrete ac-
tions work well, SOOP cannot be expected to outperform OPD, mainly because OPD
searches the smaller space of discrete-action sequences, which still contains a good
solution. Nevertheless, here SOOP still manages to find a good solution in the larger,
continuous-action space, obtaining similar performance to OPD and still outperform-
ing L.P and HOLOP, which apparently search the larger space less efficiently.

Table 3.3: Parameters for the two-link robot arm.
7= | 500 | 1000 | 5000

SOOP,a=| 05| 0.6 0.5
OPD M= 5 7 7
LPL=| 01| 09 1.1
HOLOP K= | 5 5 5
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Figure 3.8: Performance for the two-link robot arm.
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3.2 Optimistic best-first search for minimax control

We consider next the extension of optimistic ideas to sequential, adversarial decision-
making problems, see e.g. Chapter 10 of (La Valle, 2006). Two adversarial agents
take discrete actions in turn, one of them aiming to maximize the infinite-horizon cu-
mulative value of the actions, and the other to minimize it. This framework can model
important classes of problems, including e.g. turn-based games such as go or chess,
as well as our main interest: optimal control under uncertainty, where the uncertainty
is conservatively treated as the action of the opponent agent. It turns out that apply-
ing optimism in the adversarial setfing naturally leads to the best-first search variant
(Palay, 1982) of B*, a classical minimax algorithm proposed by (Berliner, 1979) in
1979, The name “best-first search” has been used for many other methods (including
A¥* and even two minimax techniques: fixed-depth (Plaat et al., 1996) and adaptive-
depth best-first search (Korf and Chickering, 1996}), so to avoid confusion we call
the algorithm optimistic minimax search (OMS), always keeping in mind its relation
to B*,

OMS explores a tree representation of the possible sequences of max and min
agent actions, as do other minimax search algorithms such as alpha-beta pruning
(Knuth and Moore, 1975) or those in (Plaat et al., 1996; Korf and Chickering, 1996).
At each leaf node, OMS requires lower and upper bounds on the values of action
sequences passing through that node, and it propagates these bounds upwards in the
tree by maximization or minimization according to the type of node. The next leaf to
expand is selected optimistically, by starting from the root and recursively moving to
a child that maximizes the upper bound at max nodes, or minimizes the lower bound
at min nodes. OMS can stop after any number of iterations, after which it returns the
deepest expanded node. Thus it is an adaptive-depth, anytime algorithm.

By exploiting the optimistic framework, we are able to develop theoretical per-
formance guarantees for OMS — which to our best knowledge were missing from
the literature on B* search. Specifically, we provide conditions under which OMS
is guaranteed to approach the minimax-optimal solution as the budget of node ex-
pansions increases. These conditions impose structure on the value function so that
earlier decisions are more important than later ones, and require this structure to be
reflected in the bounds. A posteriori, OMS is then near-optimal to the extent of the
gap between the upper and lower bounds at the deepest expanded node. To obtain
an a priori bound, we characterize the size of the subset of nodes that OMS expands
by its asymptotic branching factor, and use this factor to provide a tight relation-
ship between computation invested and near-optimality. In particular, when the gaps
decrease exponentially with the depth, the convergence rate is directly characterized.

Throughout this section, we illustrate the theoretical framework in several classes
of problems, including function optimization, games, and optimal control under un-
certainty. In these examples, we study the value of the branching factor, illustrating
that it is a meaningful measure of problem complexity. An empirical study illustrates
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the analytical properties of OMS, and also includes the control problem of optimal
treatment of HIV infection under uncertainty on drug effectiveness.

The importance of the effective branching factor in the analysis of minimax al-
gorithms was understood as early as (Knuth and Moore, 1975, Pearl, 1982), where it
was applied to alpha-beta pruning, see also (Korf, 1998). However, OMS is adaptive-
depth and behaves quite differently from fixed-depth methods like alpha-beta. It is
closer to the adaptive-depth best-first method of (Korf and Chickering, 1996), which
does not have an analysis and in fact may converge to suboptimal solutions, as we
will show in an example. Here we provide a general analysis of OMS near-optimality
and branching factor, placing them in direct connection with (smoothness) properties
of the value function — something that is largely missing in works analyzing classical
minimax methods. From this perspective our branching factor is closer to other com-
plexity measures in optimistic methods, such as the branching factor in (Hren and
Munos, 2008a), the near-optimality dimension in Section 2.2 and (Munos, 2011), the
near-optimality exponent in Section 4.1, etc. Different from these however, it works
in minimax problems and filters nodes using a nontrivial, nonlocal property, which
must hold for the entire path to the node. Finally, it must be noted that the B* search
algorithm, of which OMS is a special case, aims only to find the optimal action at the
root, whereas OMS as applied here further refines the value at the root even after the
first action is clear, which is useful in optimization.

Throughout this section we preserve the full generality of the approach, by stay-
ing in the high-level setting of an adversarial decision-making process. We provide
several examples of problems to which this setting can be applied. In particular, in
Example 3.3, we specialize it to an optimal control problem with disturbance, which
is closely related to the framework of Section 2.1.

3.21 Problem statement and examples

Consider an adversarial, sequential decision-making problem where a maximizer
(max) and a minimizer (min) agent take actions in turn. The max and min actions
are respectively denoted » and w, and belong to action spaces 7 and W. We assume
that {7 and W contain finitely many elements, M and M respectively. A generic action
is denoted z € Z := IV UW, and can be either a max or min action. Denote an infinite
sequence of actions by z.. = (20,21,22,23, ... ) = (1o, wo,u1,w1,...) € (U x W)™, and
a finite sequence of d actions by 24 = (20,21, - --, 241, with 2o the empty sequence by
convention. The truncation of z.. to 4 initial elements is denoted Zeold- Finally, define
a sequence of reward functions ry : (7 x W)l4l « U4 R d > 1 were notation | d|
means the result of the integer division of d by 2 and |d| the remainder. Here, the
convention is that a set to power 0 is omitted. The meaning of r;(z;) is that of imme-
diate reward following a sequence of 4 decisions. Then, the overall infinite-horizon
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value of sequence z.. is:

v(2.) 1= Y 7a(2sja) (3.8)
d=1
The goal 1s to find the minimax-optimal value, defined as:
2%
*:= lim | maxmin - -maxmin 3.9
v":= lim | maxmin - - -maxmin dgl ¥q(Za) (3.9)

when this limit exists.® This problem is similar e.g. to the one in Chapter 10 of La
Valle (2006).

Define #(z4) = {zm ‘zm|d =2z }, the set of sequences starting with g;. The
following requirement sits at the core of our approach.

Assumption 3.3 There exist functions | and b and a decreasing sequence {8(d) }a=0
of positive real numbers so that for any action sequence gy:

I{za) <v(ze) < b(24), V2 © F(2a) (3.10)
b(za) —1(za) = 8(d) (3.11)

Thus, (3.10) says that ] and & are lower and upper bounds on values of sequences
starting with z;. Our algorithm will require access to such bounds. Equation (3.11)
intuitively restricts to problems where later decisions matter less than earlier ones.
We will also call 8(d) the gap (between the two bounds).

Example 3.1 Adversarial optimization. Our first example is academic, and will later
provide important insight into the behavior of the algorithm. Consider a function
glx,v),g:10,1] < [0,1] — IR. Both agents take binary decisions, U =W = {0, 1}, with
the following meaning. The max agent takes the domain [0, 1] < [0, 1] and splits it in
half along dimension x, selecting the first half if # = 0 and the second if u = 1. The
min agent then takes the resulting set and similarly splits it in half along dimension
v. The max agent takes over and splits along x, and so on, see Figure 3.9. An infinite
sequence Z.. corresponds to a point and its value is v(z..) = g(x,y), assuming that g
can be decomposed in the form (3.8).

Take, for example, function g(x,y) = x + y, which satisfies this property. For
this function, upper and lower bounds can be easily found as follows. Each finite
sequence g4 corresponds to a box (X,Y,A,A,) where XY are the lower-left coor-
dinates and A,, A, the lengths of the sides. Then, Hzgg) =X+Y,b(zg) =X+Y+
Ay + Ay, Further, Ay = Q*L‘HU,A), — 2714l so that B(zg) —lzg) <2- 2-d/241 <
4-(1/v/2)% =: 8(d). The minimax-optimal value is v* = max, min, g(x,y) = 1 and
the corresponding minimax solution is the lower-right corner of the domain. O

*Decisions #, w, and index k are used when the max and min actions are regarded separately; other-
wise, we use generic decision z and index 4. Note that 4 corresponds to depth in a planning tree.
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Figure 3.9: Adversarial optimization. The max agent takes action 1 choosing the
continucus-outline box, the min agent ( choosing the dashed box, and the max agent
then applies 0 to choose the dotted box. Any infinite sequence of decisions is uniquely
assoclated to a point.

Example 3.2 Two-plaver games with discount. Consider a turn-based game such as
20, where the state of the board is represented by vector x. At furn & > 0, the player
takes decision v = za; and the opponent responds with wy = z2z41. These decisions
affect the board according to a transition function, x;41 = f{x4,24), and the player
attains rewards p(x4,24,%4+1), e.g., in go related to the territory and the number of
pieces taken. The goal is to achieve discounted, minimax-optimal play:

2k
lim maxminwmaxminz ydp(xd,zd,de)
k= | B0 W B=1 W1 374

This is modeled in our framework by taking py(zg) := ¥ 'p(xg 1,24 1,%3), while
noting that the dependence of the rewards on the sequence of previous actions is
collapsed into the state signal.

To ensure Assumption 3.3, we impose the following:

Assumption 3.4 Rewards are bounded to the unit interval, p : X x Zx X — [0,1].

This may require rescaling the original, nonunit rewards. Since all rewards after ap-

plying z4 are in [0, 1], we have [(zq4) = Z‘Jf:_g Yp(xj,zj,x541) and b{zg) =1{za) + %,

,yd

with the convention that an empty sum is 0. Therefore, 8{d) = =

tion 3.3 is satisfied.
There may be terminal, game-over states, from which any transition ends up in
the same state with reward 0. ]

and Assump-
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Example 3.3 Discounted optimal control with disturbance. Finally, take an optimal
control problem for a system affected by disturbances. The dynamics at discrete-
time step k are: xp1 = f{xg, ur, wr), where u is now the applied action and w is
the disturbance. A reward rpq = p{xg, tg, Wi, Xz41) 1s obtained, and the goal is to
achieve the best possible discounted return, conservatively taking into account the
worst possible disturbances, as usually done in robust control:

k=1
lim maxminmmaxmjnz Yp(xju,wixi1)
k—eo Hg  Wo M1 Wk71j:0

To place this in our framework, take:

0, ifd =2k+1
}}‘p(xk,uk,wk,xkﬂ) ifd =2k+2

Pal(za) = {

We again impose reward boundedness to the unit interval:

Assumption 3.5 The reward function satisfies p : X < U x W x X — [0,1].

. ]
Thell, l(z'd) = kl_d:JO 1'}lkp(xkyukywkka+l) and b(Zd) = I(Zd) + }’T’y’ so that S(d) —
Ldjy = %\/Vi and Assumption 3.3 is satisfied.

1 To make an explicit link with the optimal control problem of Section 2.1, con-
sider the case where the disturbance w; is a random variable with a probability dis-
tribution that may depend on the current state and action: p{w|x,u). Then, we can
eliminate the explicit dependence on the disturbance by defining the stochastic dy-
namics: f{x,u, f{x,u,w)) := p(w|u,x) and the reward function p{x,u, f{x,u,w)) :=
P (x,u,w, f(x,u,w)). Functions f and p define a Markov decision process as in Sec-
tion 2.1. Of course, the goal imposed there, of maximizing the expected discounted
return (2.1), only makes sense because w is assumed to be a random variable. In the
more general setting here, we do not make this assumption — instead, the disturbance
w can have any behavior and we solve the problem for the worst-case behavior. [

It must be emphasized that in contrast to Example 3.1, Examples 3.2 and 3.3
comprise entire classes of practical problems.

More generally, lower and upper bounds can be derived if v is Lipschitz under a
metric ¢ on the space of sequences:

(g~ ()] < 222l
and if for any set #'(z,; ), we have access to the value of a sample z.. € #'(z;). Define
dam(Z (24)) 1= SUPy ¢ w2y, (20, 2L.), then V2L, € F(za):
v(zl.) 1(za)
v(z.) b(za)

v(Zeo) — diam{ # (z4))
v(Zeo) + diam{ Z (z4))

=
=
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Then, 8(d) =2 -diam(Z(z;)) and the condition on &(d) from Assumption 3.3 turns
into a requirement on the diameters and thus on the smoothness of v.

In fact, in e.g. Example 3.1 the bounds follow from the Lipschitz property of
g{x,y) = x+y in the L; metric. Tn Example 3.2, a Lipschitz property of v holds

. (2002 . .
for the metric £(Ze.,z..) = ydlliy , where d(2..,2..) is the first index where the two

sequences are different (a similar property holds for Example 3.3). However, the
bounds in the examples were computed in a smarter way that did not require access
to the exact value of a sample; indeed such a value will often be difficult to obtain
since it 1s an infinite sum.

For more msight, the bounds ! and & can be compared to those mm DOO (Sec-
tion 2.2), where they were also obtained from a Lipschitz condition; and to those in
OPD (Section 2.3) where they had to be obtained directly due to the infinite sum, like
in Examples 3.2 and 3.3, but they were again related to a Lipschitz condition.

In general, Assumption 3.3 allows any procedure for computing the bounds (3.10)
as long as they satisfy together with v the smoothness property (2.11).

3.2.2 Optimistic minimax search

Optimistic minimax search (OMS) explores a tree representation of the possible ac-
tion sequences, as illustrated in Figure 2.10. OMS starts with a root node correspond-
ing to the empty sequence, and iteratively expands »n nodes. Expanding a node adds
new children nodes corresponding to all the M max actions (for max nodes) or N
min actions (for min nodes). Each node at some depth d is reached via a unique
path through the tree, and is thus uniquely associated to the sequence of actions
W= (zo,z1, . ,zd,l) on this path. In what follows, we will work interchangeably
with sequences and nodes, keeping this equivalence in mind.

Figure 3.10: Illustration of a minimax tree developed by the algorithm when applied
to Example 3.1. Squares are max nodes, and circles min nodes. Nodes are labeled
by action sequences, shown inside the node, as well as by the interval [L, B, shown
outside. Four nodes have been expanded, and the thick path leads to the node that the
algorithm would expand at iteration five.

Using the same notation as for the other trees so far, let &7 denote the current tree,
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F(T) the leaf nodes of this tree, and %(z) the children of node z. The algorithm
computes lower and upper bounds 1.(g) and B(z) for each node. They are initialized
at the leaves using / and » from Assumption 3.3, and propagated upwards in the tree:

I(z), ifze Z(T)

L{z) = ¢ maxy .o L(2), ifzis amaxnode, z¢ Z(F)
miny oy 1.(2'), if zis aminnode, z ¢ £(5)
b(z), ifz e #(F)

B(z) = { maxycqy B(z'), ifzisamaxnode, z ¢ Z(7)

(3.12)

min, ) B(z'), ifzisaminnode,z ¢ #(7)

To choose the next leaf to expand, the algorithm starts from the root and con-
structs a path by recursively selecting an optimistic child for the agent at the current
node. That 1s, at max nodes a child with the largest upper bound is selected (opti-
mistic for the max agent), while at min nodes the algorithm moves to a child with the
smallest lower bound, which is optimistic for the min agent (it is pessimistic for the
max agent).

OMS stops after » node expansions, and returns the deepest node expanded: its
sequence £ and bounds. Algorithm 3.2 summarizes the entire procedure, where (-, )
means the concatenation of the argument sequences and d4(-) yields the depth (length)
of the argument sequence. Ties in the maximizations and minimizations can be bro-
ken arbitrarily. Measuring computation by the number of node expansions is moti-

Algorithm 3,2 Optimistic minimax search (OMS)
Input: budget n
1: initialize: & «+ {zgo}, the root
2: for iteration f =1 to n do
3: 2 2o
4: whilez ¢ #(F ) do
ArgIaX, .,y B(z'), 1Lz is a max node

5 T . N e :
argminy .o, L(z'), if 2is a min node

end while
Z(t) 2
expand z(7), by adding to 7 its children:
(g(t),u) Yu e U, if z(¢) is a max node
or (z(t),w) Yw & W, if g(¢) is a min node
9 compute bounds for all z € & with (3.12)
10: end for
11 2 argmaxz(t) —1...4(2(2))
Output: 2,1(2), b(2)
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vated by the fact that these operations are often the most expensive, such as e.g. in
the control problem of Example 3.3, where expansion requires the simulation of the
dynamics. OMS is an anytime algorithm: # does not have to be specified in advance,
and the algorithm can be stopped after any number of expansions.

Sometimes, OMS will be used with the intention of finding a decision to apply,
rather than an approximation of the optimal value. In this case, the first action of
the sequence £ is applied by the max agent, which then waits for the min agent’s
response and then reapplies OMS from the resulting situation (e.g., state). This can be
seen as receding-horizon control (Maciejowski, 2002). Note that the min agent could
itself apply OMS to find the actions, simply by starting with a min root node and
then applying the algorithm as usual. Finally, the bounds 7. and B can be efficiently
maintained by only updating at iteration ¢ the path from the last expanded node z(t)
to the root.

3.2.3 Analysis

Let us first establish a basic property of OMS.

Lemma 3.2 At any iteration t, for any nodes g, f = Cg(z) on the optimistic path, we
have [L(z),B(z)] C [L('),B(Z)].

Proof: If z is a max node, B(z) = B(z') and L(z) > L(z) since L(z) is the maximum
among the children’s L-values. The situation is symmetrical at min nodes. |

Define for any node z; of finite depth 4 the minimax value v(z;) among infinite
sequences starting with g;. Formally:

2k

li min- - n ; ;
R M
4 . .
if z; 1s a max node
v(za) = ) pjlz;) + 21 (3.13)
= Jim fmin - - - i . :
Jim [min - max min ; Parj((2a,2)5))]
if z; i1s a min node
again assuming that the limits exist. Here, g;; = (uo,wo, ..., uz—1,w;—1), while g ; =
(WO: e :uk—lawk—l)-

The second and final Lemma is essential to the analysis below, since it character-
izes a restricted subset of nodes oufside which the algorithm will never expand.

Lemma 3.3 At depth d in the tree, OMS only expands nodes in the set:

Fy = {za| " —v(zp)| < 8(d),Vz, on path fromroot to 24} (3.14)
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Proof: We will show by induction from leaves to the root that:
v(z) € [L(2),B(z)], Vze T

At any leaf, the base case holds by definition: v(z) € [[(z),b(zq4)] = [L(z4),B(z4)].
For the general case, consider an inner node g, and assume the property is true at all
its children z'. We have by definition (3.13):

(z,) MAaX = (z,) v(¢')  if g, is a max node
v z = L + + .
Ny cg(z,) v(z)y if Zp i3 a min node

We first show that L(z) < v(z). If z is a max node, take child z’ so that L{z) = L(z'),
then L(z) = L(z') <v(z') <v(g). If z is a min node, take child g’ so that v(z') =
v(z), therefore: L(z) < L(z') <+v(z') = v(z). Property B(z) > v(z) is shown in a
symmetrical way: If z is a max node, take child z’ so that v(z') = v(z), therefore
B(z) > B(Z)) > v(z') = v(z). If z is a min node, take child z’ so that B(z) = B(z'),
then B(z) = B(¢') > v(z') > v(z).

Consider now any leaf z; selected for expansion on the current tree, and any an-
cestor node g, at depth p on the path from the root to this leaf. Applying Lemma 3.2
iteratively from g, down to the leaf z;, we have [L(z,),B(zp)] C [L(z4),B(24)] =
[(z4),b(z4)]. Then:

v(zp) € [1(za), b(za)] (3.15)

At the root, v(gg) = v*. For any g, the values v* and v(z,) are in the interval
[1(z4),b(zg)], which has length at most 8(d), so the property in (3.14) holds. This
concludes the proof, |

At this point, we can already provide an a posteriori bound for the algorithm that
can be directly evaluated after the algorithm has run.

Theorem 3.4 Let d* be the largest depth of any expanded node. Then, v* —v(%)| <
S8{(d*) andv* < [L{z0),B(20)].

Proaof: Follows immediately from (3.15) and Algorithm 3.2. ]

Note again that B(go) — L(zo) < b(2) — [(2) = &(d*). To obtain a more refined
bound, which works a priori, we characterize the size of the expanded subset & * =
g0 7. Let |-| denote the cardinality of the argument set.

Definition 3.5 et 1% be the smallest positive number so that 3C > 0,
¥d > (.

qu*‘ < Cﬁd,

The quantity ¥ is an asymptotic branching factor of 77", and it quantifies the
complexity of the search problem. The smaller ¥, the simpler the problem. The
smallest possible value for ¥ i1s 1, when 7" contains a constant number of nodes at
every d (e.g., just one minimax-optimal path), and the largest value is +/MN, when
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&7} contains all the nodes at 4, namely M 41 N14] nodes. Below we exemplify
in several problems. Note that 1% is similar with other complexity measures used in
optimistic optimization and planning (Munos, 2014}, such as the branching factor x
in OPD (see Section 2.3), or the near-optimality dimension  in OO (see Section 2.2).
A crucial feature of ¥ and 97" is the nonlocal character of the inequality in (3.14),
which must hold for any parent and not just the expanded node. This is mportant
since it significantly reduces the size of the tree in some problems, as we will illustrate
in Example 3.4.

Theorem 3.6 (i) Let d(n) be the smallest depth d so that Z?‘:O C®/ > n. Then,
" —v(2)| < 8(d(n)). (ii) Further, when Jc > 0,A < (0,1) so that §(d) < cA?, i.e.
when the gap sequence decreases exponentially fast, then:

8.1 _ logl/d _ loglfi )
S(d(n)) < C(w n) log? — O(n log ) Ifﬁ s 1 (316)
- LA = o) o=1

Proof: For arbitrary d, OMS expands at most all the nodes up to 4 in " before

expanding a node at 4 + 1. Hence, since .97* contains at most 2‘}33*1 C¥/ nodes

until 4(n) — 1, and the algorithm expands more nodes than this (since by assumption
n> E‘;i”g_l C®/). So, at least one node at d(n) is expanded. From this 4* > d(n) and
since sequence 8{d) is decreasing, part (1) follows from Theorem 3.4.

To show part (i1), let % > 1. Thenn < ):?fg c¥l=C %, and solving this for

T
d{n) we get d(n) > %, which when replaced in 8(d(n)) gives the desired

inequality. Similarly, if 9 = 1, we have n < Z?(:ng C = C(d(n)+ 1), from where
d(n) = % — 1 which is substituted in § (d(n)). ]

Part (i1} of Theorem 3.6 is of practical importance, since in many problems the
gap &(d) will decrease exponentially with d, as e.g. in Examples 3.1-3.3, where 4
is respectively 1/+/2, v, and /7. The big-O expressions in (3.16) highlight the qual-
itative, asymptotic behavior of the algorithm, whereas the detailed expressions pre-
ceding them make the constants explicit. Suboptimality decreases as a logarithmic
power of the computation n» when @ > 1 (since the expanded tree grows exponen-
tially), and exponentially fast with » when © = 1 (since only a constant number of
paths must be explored). Since 1+ is generally unknown, the near-optimality of OMS
cannot be determined in advance. However, Theorem 3.6 provides confidence that
the algorithm automatically adapts to the complexity of the problem.

Example 3.4 Adversarial optimization: branching factor. We will find 1 for Exam-
ple 3.1 with g(x,y) = x+ y. For any finite sequence z; the minimax-optimal value
v(zq) is the value of g in the lower-right corner of the corresponding box. Consider
some arbitrary odd depth d; boxes g, at this depth are small tall rectangles like those
shown in continuous outline at the bottom-right of Figure 3.11. Then the gap of these
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x=1,
®  y=0
Figure 3.11: Counting the nodes in &7, Some minimax-optimal points are high-
lighted with black disks.

boxes is 8(d) = 3A =3.27@+1D/2 Recall (3.14): if we can find a larger box con-
taining g, which is more than 8(d) away from the optimal value, then z; will not be
expanded. Now the suboptimality of any box is the distance between its lower-right
corner and the main diagonal of the unit square. Since boxes 1 and 2 are 4A-away
from optimum, no subbox z; inside these larger boxes will be expanded. Boxes 3 and
4 are 8A-away so no subbox will be expanded there either, and continuing iteratively
like this we can fill the entire domain except the lower-right corner, which contains 8
boxes. At depth d 4 1, boxes are square and have diameter 2A (shown in gray dotted
line) so we can eliminate in a similar way all of them except the 16 in the corner.
It follows that ‘ﬁd*‘ < 16,vd, and % = 1: the problem is easy. The regret bound,
including constants, is 4(%)”/16_1.

It must be emphasized that checking the suboptimality of parent boxes is crucial:
if we only checked boxes for their own suboptimality |v* —v(z,)|, no box with the
lower-right corner on the main diagonal could be eliminated, leading to a number
of boxes growing with the depth and a large branching factor: the difficulty of the
problem would be misrepresented.

Note that such applications of tree search methods to minimax optimization have
been studied before, see e.g. (Ratschan, 2002), although that paper uses a different
theoretical framework. U

Example 3.5 Two-player games: branching factor. We will illustrate the meaning of
1+ and the regret bounds for Example 3.2 with discount factor 7y, in two representative
special cases.

Consider first that all rewards are equal, say they are all 1. Then, v = 1/(1—17)
and any sequence has this value. So no nodes can be eliminated with the condition in
(3.14), " contains the whole tree, and OMS will in fact explore nodes uniformly,
in the order of their depth. As shown above, in this case ¥ = /MN. Therefore, this
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uniform type of problem is an interesting worst case, where 1 is the largest possible.
_ loplfy
From Theorem 3.16 with A = ¥, near-optimality is O(n loev#V ),

Next, an example with © =1 is constructed, see Figure 3.12. At each max node
along the path on the left of the tree, one child has reward 1 and all other children
have reward (0, and the same is true of their complete subtrees. The situation is
reversed at min nodes. Thus, the leftmost path is minimax-optimal, with value v* =

P+7+. =

d+h

Figure 3.12: A game tree with 1% = 1. Rewards are shown along the transitions and
inside subtrees where they remain constant. The thick path is minimax-optimal.

To study T, consider an arbitrary node z; .5 at depth d + h that is not on the
optimal path, but does belong to the subtree of some max node z; which is on this
path at an even depth 4. Two examples of such nodes are shown by *x” symbols in

the figure. Then, the value of 2,5 is ¥{zgun) =Y + 77 + ...+ ¥ 2 = 1 yd Since
S(d+h)= 7"? — see Example 3.2, node z;, 5, can be excluded when:

+d +d
pa Py

T2 Ty

V' —v(zayn)| >

which boils down to & > % a positive constant which we call /1. Sim-
ilarly, take now a node at depth 4 4 % on a non-optimal subtree of a min node
at an odd d, as exemplified by a ‘+ in the figure. The value of such a node is
Py + P Pyt =P T AT A
Y 1+7; where the intermediate step separated the odd and even
powers of yat depth d and larger. Solving the exclusion condition results in the same
lower bound H on A as for max nodes.
Defining N = max(M, N}, at some arbitrary depth 4’ the set 7, contains at most
the following amount of children coming from optimal nodes at various depths d < &',
which cannot be excluded via the conditions above:

14NN .. N =C
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so that .77} < C and the branching factor # — 1. So this is an easy problem for OMS,
and suboptimality is O{y"/C), ]

3.2.4 Experimental results

First, in the optimization problem of Examples 3.1 and 3.4, we experimentally illus-
trate the practical effects of the theoretical properties studied above. Then, we show
that OMS also works well in a challenging problem different from the games where it
(and other minimax search algorithms) are usually applied: controlling infection with
the human immunodeficiency virus (HIV), under uncertainty on the effectiveness of
the drugs. This problem is in the class of Example 3.3.

Adversarial optimization. In addition to illustrating the properties of OMS, in this
example we also compare it with two classical minimax search algorithms: alpha-
beta pruning (Knuth and Moore, 1975) and adaptive-depth best-first minimax search
(BEMS) (Korf and Chickering, 1996). Alpha-beta pruning is well-known so we do
not review it here. BFMS is less widely used but it is an anytime algorithm similar
to OMS. It develops the tree of Figure 3.10, but instead of maintaining an interval at
each node it uses just one value, which is inifialized using a heuristic function at the
leaves and then propagated upwards as in (3.12). At each iteration, BEMS expands
the leaf of the principal variation, a path along which the root inherited its value.
After expanding a given amount of nodes it returns the principal variation. For both
alpha-beta pruning and BFMS, we use [ and & as a heuristic at respectively max and
min leaves.

The computational requirements of alpha-beta pruning are not directly controlled,
instead it searches unfil a given depth in the tree. It also expands a varying amount
of children per node. Thus, to keep the comparison fair, we vary the depths 4 in
the range 3,4, ..., 15 and measure for each 4 the required computation, in the form
of the number of nodes n; created on the tree. Figure 3.13, top shows the resulting
values of n;. Then, we allow OMS and BFMS to create as many nodes. This is
different from the number » of expanded nodes that we used in the theory above, but
only up to a constant factor so there are no changes in the asymptotic behavior. We
only show OMS and BEMS results corresponding 4 < 9, since for the other budgets
upper and lower bounds can become equal in double precision, and the results are not
meaningful.

Figure 3.14, top shows the depths reached by OMS and BEMS. Clearly, expand-
ing nodes in the order of their mportance 1s better than up to a fixed depth like in
alpha-beta: the depths reached by OMS and BFMS, as well as the corresponding
confidence in the solution, are much better. Finally, Figures 3.13 and 3.14, bottom
show the near-optimality of the returned solutions. This is measured here by the re-
gret, defined for alpha-beta and BFMS as the distance between v = 1 and the value
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Figure 3.14: Results of OMS and BFMS. BFMS regrets because they are 0 for all
i > 12 in this problem, so they are not shown.

returned by the algorithm, and for OMS as half the size of the interval [L{zo), B(zo)]
at the root (equal to the average distance of L and B to v*).

As expected from the analysis and the branching factor 1 = 1 obtained in Ex-
ample 3.4, OMS depths grow linearly with the computation budget and its regret
shrinks exponentially with this depth. BEMS behaves surprisingly well: it often finds
the optimal solution, and its depth also grows linearly with a larger slope than for
OMS (in contrast, in alpha-beta n, grows fast with 4 due to the exhaustive nature
of the search, see again Figure 3.13, top). Unfortunately, unlike for OMS, a good
behavior of BEMS cannot be guaranteed, and indeed BEMS 1s inconsistent over the
class of problems satisfying Assumption 3.3, which means that for some problems it
may entirely fail to converge to the optimal solution. The following counterexample
illustrates this property.

Example 3.6 BFMS is inconsistent. Consider again adversarial optimization, Ex-
ample 3.1, but with a different function g(x,y), equal to 0.8 when x < 0.5, and x + y
otherwise. Take /(z) = &(g) = 0.8 for any box g in the left half of the domain, and use
the bounds from Example 3.1 elsewhere. These [ and & functions satisfy Assump-
tion 3.3. BEMS develops the right (optimal) branch of the tree only until iteration
2, see Figure 3.15, and at any subsequent iteration it only expands nodes in the left
branch of the root. Thus for any budget # >> 2 it returns value 0.8, a constant away
from the optimum v* = 1. ]
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Figure 3.15: BFMS tree in the counterexample. Struck-through values are those
changed after iteration 1.

HIV infection control. We consider the HIV infection dynamics described by
Adams et al. (2004), with six state variables: 71 and 7> [cells/ml], the counts of
healthy type 1 and type 2 target cells, 7] and 7 [cells/ml] the counts of infected
type 1 and type 2 target cells, V the number of free virus copies [copies/ml], and
[cells/ml] the number of immune response cells. The system is controlled in discrete
time with a sampling time of 5 days. In the strategy of structured treatment interrup-
tions, two drugs are independently either fully administered (they are “on’), or not
at all (they are ‘off’); thus there are two binary control variables u1 and u,, leading
to M = 4. In other authors” work a one-to-one mapping was assumed between drug
application and effectiveness. Here we use a variant where the effectiveness values
g1 and & of the two drugs are, more realistically, uncertain by depending randomly
on the inputs:

0 wp 1, ifu; =0

£ =1 0.77 wp. 05 1fu; =1
0.63 wp. 0.5 1fu; =1

0 wp. 1,1t =0
£=+¢033 wp 05 ifu—=1 (3.17)
0.27 wp. 05 1fua=1

where “w.p.” stands for “with probability”. So depending on action u, there can be
up to N = 4 possible outcomes. OMS is easy to modify for this varying-N case.

The system is initialized to the unhealthy equilibrium x, = [163573,5,11945, 46,
63919,24]T, which represents a patient with dangerous infection levels and low im-
mune response. ST is used to control the drugs such that the immune response of
the patient is maximized and the number of virus copies is minimized, while penal-
izing the drugs administered due to their side-effects. We use the reward function of
Adams et al. (2004) and normalize it to [0, 1]. An ideal solution would drive the state
to the healthy equilibrium x4 = [967839,621,76,6,415, 353108}T, which represents
a patient whose immune system controls the infection without the need of drugs.

OMS is applied to plan a solution in receding horizon, while treating the uncer-
tainties as an opponent that aims to minimize the return, like in Example 3.3. The
budget 1s n; = 9000, specified again as the number of created nodes, since the amount
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Figure 3.16: HIV system controlled online with OMS. The trajectories of the six
system states are shown on the top and middle rows, while the two applied actions
and the (normalized) rewards obtained are shown on the bottom row.

N of children of min nodes varies and using n would not result in a consistent com-
putational load. The resulting trajectory is shown in Figure 3.16.* As hoped, the
algorithm eventually stops administering drugs (1; = 1z = 0), and the state reaches
the healthy equilibrium x4 (although this particular solution has a ‘lucky’ disturbance
realization for which the equilibrium is reached quickly).

4This experiment was run with a variant of OMS where the node to expand was directly selected
to satisfy the interval inclusion property in Lemma 3.2, rather than by selecting bound extrema as in
Algorithm 3.2.



58 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS
3.3 Summary and conclusions

In the first part of this chapter, we described SOO for Planning, a planning algo-
rithm for deterministic, continuous-action Markov decision processes. In extensive
experiments, SOOP consistently ranked among the best algorithms, fully dominating
competing methods when the problem requires both long horizons and fine discretiza-
tion. In problems where discrete actions do well, discrete-action planning starts at an
advantage; nevertheless, in our example that had this property, SOOP could still be
applied with minimal loss of performance, unlike its continuous-actions competitors.

In the second part, we have showed analytically that, under appropriate condi-
tions, optimistic minimax search (also known as the best-first search variant of B¥)
converges in a well-characterized way towards the optimal minimax value, and illus-
trated the analysis in an empirical evaluation. This is useful among others in control
problems with disturbance, where OMS can be applied by treating the disturbance as
an opponent, but also in other settings such as two-player games.



Chapter 4

Solving stochastic problems

4.1 Optimistic planning for Markov decision processes

In this section we move away from the deterministic problems considered so far.
We describe and study an online, optimistic planning algorithm for problems that
have a finite number M of actions, and in addition a finite number N of possible ran-
dom next states for every transition. This includes complete, finite MDPs (Puterman,
1994) as well as infinite (e.g. continuous-state) MIDPs that satisfy the condition on
the next states. The algorithm is thus called optimistic planning for Markov decision
processes (OPMDP).

At a given step of interaction with the system, OPMDP develops a tree start-
ing from a node containing the current system state and then iteratively expanding
well-chosen nodes. Rather than the open-loop action sequences of OPD, a solution
here must be a closed-loop assignment of actions to stochastic state outcomes, rep-
resented as a subtree. 'To choose which node to expand, first an optimistic subtree is
constructed. Then, among the leaves of this subtree, a node is selected that maximizes
the contribution of the node to the uncertainty on the value. After » such iterations,
the algorithm returns a tree policy by maximizing a lower bound.

Our analysis revolves around a near-optimality guarantee for OPMDP as a func-
tion of the number of expansions n. We show that OPMDP adapts to the complexity
of the planning problem, by only expanding nodes with significant contributions to
near-optimal policies. This notion is formalized so that the quantity of nodes with &
contribution to £-optimal policies is of order ¢ ¥, with y a positive near-optimality
exponent. Then, we show that the near-optimality is of order /¥ for large n. When
there are few near-optimal policies, as well as when the transition probabilities are
nonuniform — both corresponding to having more structure in the MDP — yr is
small and the bound is better. To our knowledge, this is the first near-optimality
bound available for closed-loop planning in stochastic MDPs.

While the bound does not directly depend on N and M, in practice they should not
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